6 Jun
2018

Should you use IIot to log rejects?

Using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

Lean Manufacturing
Should you use IIot to log rejects?

While noticing where, when, and how rejects occur are all important considerations to make when trying to improve production efficiency, the tools used to measure and log rejects are just as important.

 

Worximity_TC2_in_hand_machine_monitoring

One method of measuring and logging rejects is with a quality control worker who manually checks the product for quality and records data by hand, with paper or via manual entry in a computer. While this method works, it wastes time, labor, and is costly in the long run.

Measuring the parts via autonomous technology, by sensor or automatic micrometer for example, is a much faster and more accurate quality control check, as it is not subjected to human error. Besides improving accuracy, an autonomous reject system will also improve insight into the problem, potentially taking preventative action before the problem occurs. With this type of system, more “checkpoints” can be created (perhaps even one after every manufacturing process) allowing problems to be found as they arise. Autonomous data entry will also save labor, as an employee no longer has to do it on the clock.

 

While the design of these systems are largely industry and plant specific, converting and using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

 

Want to learn more?
Download the ebook
Related blog articles

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
23
May 2024

Exemples de Lean Manufacturing provenant des principaux leaders de l’industrie

French
9
Jan 2024

Manufacturing Trends to Lookout for in 2024

English
16
Oct 2023

The Synergy Between Lean Manufacturing and OEE Monitoring

English

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
17
Aug 2018

5 Digital Transformation Predictions for 2018 - an infographic

An infographic presenting 5 Digital Transformation Predictionsfor 2018 and Beyond affecting manufacturers: emerging technologies, robotic process automation, cloud computing and artificial intelligence.

English
6
Jun 2018

10 Ways Machine Learning Is Revolutionizing Manufacturing In 2018

Machine learning algorithms are helping manufacturers find new business models, fine-tune product quality, and optimize manufacturing operations.

English
20
Dec 2018

A New Look on the Food Processing Industry with AI

Significant changes will be noticed in the food processing industry as investments in artificial intelligence are on the agenda of an increasing number CIOs in the coming years.

English